SINGULAR SEMI-LINEAR EQUATIONS IN $L^{1}(\mathbf{R})^{\dagger}$

BY STEPHEN D. FISHER

ABSTRACT

Let g be a positive continuous function on \mathbf{R} which tends to zero at $-\infty$ and which is not integrable over \mathbf{R} . The boundary-value problem -u'' + g(u) = f, $u'(\pm \infty) = 0$, is considered for $f \in L^1(\mathbf{R})$. We show that this problem can have a solution if and only if g is integrable at $-\infty$ and if this is so then the problem is solvable precisely when $\int_{-\infty}^{\infty} f(t)dt > 0$. Some extensions of this result are also given.

In [2] M. G. Crandall and L. C. Evans show that the singular semi-linear problem

(*)
$$\begin{cases} -u''(x) + \beta(u(x)) = f(x), & -\infty < x < \infty \\ u'(\pm \infty) = 0 \\ u'' \in L^{1}(\mathbb{R}) \end{cases}$$

has a solution for each $f \in L^1(\mathbf{R})$ with $\int_{\mathbf{R}} f > 0$ if (and only if) β is integrable at $-\infty$. Here β is a given positive monotone increasing continuous function on \mathbf{R} . In fact, they discuss the more general situation when β is a maximal monotone graph. In this paper we consider several extensions of the problem (*) and provide another technique for proving that these equations have a solution. In particular, we recover the result of Crandall and Evans by different means.

THEOREM 1. Let g be a positive continuous function on R with

$$\lim_{t \to -\infty} g(t) = 0, \int_{-\infty}^{\infty} g(s) ds \quad divergent.$$

Let $L^1_+ = \{ f \in L^1(\mathbb{R}) : \int_{\mathbb{R}} f > 0 \}$; for $f \in L^1_+$ consider the problem

Received August 2, 1976

^{&#}x27; Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the National Science Foundation, Grant MPS 75-05501.

(1)
$$\begin{cases} -u''(x) + g(u(x)) = f(x), & -\infty < x < \infty \\ u'' \in L^{1}(\mathbf{R}) \\ u'(\pm \infty) = 0. \end{cases}$$

The following are equivalent:

- (a) (1) has a solution for all $f \in L^{\frac{1}{+}}$,
- (b) (1) has a solution for some $f \in L^1_+$,
- (c) g is integrable at $-\infty$.

PROOF. (a) implies (b) is trivial. To see that (b) implies (c) suppose there is a function u with $u'' \in L^1$, $u'(\pm \infty) = 0$, and

$$-u'' + g(u) = f$$

for some $f \in L^1$. Then $u' \in L^{\infty}$ and u tends to $-\infty$ at both $\pm \infty$ for the following reason. Suppose there is a sequence $x_n \to \infty$ with $\lim_n u(x_n) = L > -\infty$. Let $\{y_n\}$ be any other sequence of real numbers tending to $+\infty$. Then from (2) we get

$$-\frac{1}{2}(u'(y_n))^2 + \frac{1}{2}(u'(x_n))^2 + H(u(y_n)) - H(u(x_n)) = \int_{x_n}^{y_n} fu'$$

where

$$H(t) = \int_0^t g(s) ds.$$

Hence, $\lim_n H(u(y_n))$ exists and equals H(L). Thus, H(u(t)) has a limit at ∞ which implies that u has limit L at ∞ since H is strictly monotone. But then g(u(t)) tends to g(L) > 0 as $t \to \infty$ which contradicts the fact that g(u(t)) is in $L^1(\mathbf{R})$. An identical argument shows u tends to $-\infty$ at $-\infty$. With H as above we also have

$$\frac{1}{2}[(u'(y))^2 - (u'(0))^2] + H(u(0)) - H(u(y)) = \int_{y}^{0} fu'$$

for each y, y < 0. Thus, H(u(y)) has a finite limit as $y \to -\infty$. Since $u(y) \to -\infty$ as $y \to -\infty$ we find that H(s) has a finite limit as $s \to -\infty$ implying that g is integrable at $-\infty$. The proof that (c) implies (a) is the most difficult. The first step is to show that the set of those $f \in L^1$ for which (1) is solvable is closed in L^1 ; the second step is then obviously to show that the set of those $f \in L^1$ for which (1) is solvable is dense in L^1 . To prove the first assertion, let $f_n \to f$ in $L^1(\mathbf{R})$, with $f_n \in L^1$. Let u_n satisfy

$$-u_n''+g(u_n)=f_n,$$

$$(3b) u_n'(\pm \infty) = 0,$$

$$u_n'' \in L^1(\mathbf{R}).$$

Integrate both sides of (3a) from $-\infty$ to x and then from x to $+\infty$ and use the fact that $g \ge 0$. This gives $|u'_n(x)| \le ||f||_1 + 1$ for all large n and hence

(4)
$$\|u_n'\|_{L^{\infty}(\mathbb{R})} \leq A, \quad n = 1, 2, \cdots.$$

This in turn implies that $\{u_n\}$ is equicontinuous. We may assume, therefore, that $\{u_n\}$ converges uniformly on compact subsets of **R** to either $+\infty$, or $-\infty$, or to a continuous function u. Set

$$G(x) = \int_{-\infty}^{x} g(s)ds.$$

For any $x \in \mathbf{R}$ and any n we have

$$G(u_n(x)) = \int_{-\infty}^{x} g(u_n(t))u'_n(t)dt$$
$$= \frac{1}{2}[u'_n(x)]^2 + \int_{-\infty}^{x} f_nu'_n$$
$$\leq A_1.$$

Hence, $u_n(x) \le C$ for all n and all x. Thus, it is obviously impossible that $\{u_n\}$ tends to $+\infty$. Suppose that $\{u_n\}$ tends to $-\infty$ uniformly on compact subsets of \mathbf{R} . Again we have

(5)
$$-\frac{1}{2}(u_n'(x))^2 + G(u_n(x)) = \int_{-\infty}^x f_n(t)u_n'(t)dt$$

and hence

$$0 = \int_{-\infty}^{\infty} f_n u_n'.$$

We may assume that $\{u'_n\}$ converges weak-* in $L^{\infty}(\mathbf{R})$ to a function p and also that $\{u'_n(0)\}$ converges. Integrating (3a) from 0 to x we see that $u'_n(x)$ converges pointwise to p(x) on \mathbf{R} . Hence, (5) and (6) yield

$$-\frac{1}{2}(p(x))^2 = \int_{-\infty}^x fp$$

and

$$0=\int_{-\infty}^{\infty}fp.$$

Hence, p has a limit of 0 at both $+\infty$ and $-\infty$. Again from (3a) we obtain

$$u'_{n}(y) - u'_{n}(x) + \int_{y}^{x} g(u_{n}(t))dt = \int_{y}^{x} f_{n}(t)dt$$

so that

$$p(y) - p(x) = \int_{y}^{x} f(t)dt.$$

Now let $y \to -\infty$ and $x \to +\infty$; we find

$$0<\int_{-\infty}^{\infty}f=p(-\infty)-p(+\infty)=0,$$

a contradiction. Note that this argument is dependent on g in only a minor way. In particular, if $\{g_n\}$ is a sequence of positive continuous functions converging uniformly on compact subsets to a positive continuous function g which tends to 0 at $-\infty$ and which lies in $L^1(-\infty, 0]$ but not in $L^1(\mathbb{R})$ and if, say, $\{g_n\}$ increases to g on $(-\infty, \infty)$, then the functions v_n which satisfy

$$-v_n'' + g_n(v_n) = f,$$
 $v_n'(\pm \infty) = 0,$ $f \in L^{\frac{1}{2}}$

are equicontinuous and uniformly bounded on compact subsets of **R**. We shall make use of this later on.

Returning to the functions $\{f_n\}$ and $\{u_n\}$ we see that $\{u_n\}$ converges uniformly on compact subsets of **R** to a continuous function u. We clearly have $u_n'' \rightarrow u''$ in L_{loc}^1 so that u satisfies

(7)
$$-u'' + g(u) = f \quad \text{on} \quad \mathbf{R}.$$

Fatou's lemma implies g(u) is in $L^1(\mathbf{R})$ and hence $u'' \in L^1(\mathbf{R})$; thus u' has limits at both $\pm \infty$ and u tends to $-\infty$ at both $\pm \infty$ as in the implication (b) implies (c). From (5) and (6) we get

$$-\frac{1}{2}(u'(x))^{2}+G(u(x))=\int_{-\infty}^{x}fu'$$

and

$$0=\int_{-\infty}^{\infty} fu'.$$

Hence, u' tends to 0 at both $\pm \infty$, so that u is a solution of (1). Note also that

$$\int_{-\infty}^{\infty} |u'' + f| = \int_{-\infty}^{\infty} (u'' + f) = \int_{-\infty}^{\infty} f$$

$$\leq ||f||_{1}$$

and hence

(8)
$$||u''||_1 \le 2||f||_1.$$

The second assertion, that there is a dense set of $f \in L^1_+$ for which (1) is solvable, will be proved in the following way. Let f be a continuous function on \mathbf{R} in L^1_+ with support in the interval I = [a, b]. We shall show (1) is solvable for this f. We assume temporarily that g is C^1 on \mathbf{R} .

We shall need the following Proposition.

PROPOSITION. Let a < b and let g be a positive C^1 function on \mathbf{R} which is integrable at $-\infty$ and bounded at $+\infty$; set

$$G(x) = \int_{-\infty}^{x} g(s)ds.$$

Then for each α , β the initial value problem

$$-v''(x) + g(v(x)) = f(x), \qquad a < x < b, \qquad f \in L^2(a, b)$$

$$v(a) = \alpha, \qquad v'(a) = \beta$$

has a unique solution. If $\alpha_n \to \alpha$ and $\beta_n \to \beta$ and if v_n is the solution of (9) for (α_n, β_n) , then v_n converges uniformly to the solution v of (9) for (α, β) . Finally, the family $\{v_{\alpha\beta}\}$ of solutions of (9) corresponding to the initial values $\{(a, \beta): -\infty < \alpha \le \alpha_0, |\beta| \le M\}$ is equicontinuous on [a, b].

PROOF. Once the equicontinuity is established the existence and uniqueness follow from standard results; see [1], Chapter 1. To obtain the equicontinuity assertion (from which the second assertion also follows), we multiply the top equation in (9) by v' and integrate to obtain

$$-\frac{1}{2}(v'(x))^2 + G(v(x)) + \frac{1}{2}\beta^2 - G(\alpha) = \int_a^x fv'$$

so that if x_0 is chosen with $|v'(x_0)| = ||v'||_{\infty}$ we have

$$\|v'\|_{\infty}^{2} \leq \beta^{2} + 2G(\alpha) + 2G(v(x_{0})) + A\|v'\|_{\infty}$$

$$\leq \beta^{2} + 2G(\alpha) + 2G(\alpha + (b - a)\|v'\|_{\infty}) + A\|v'\|_{\infty}$$

$$\leq \beta^{2} + 2G(\alpha) + A_{0} + A_{1}(\alpha + (b - a)\|v'\|_{\infty}) + A\|v'\|_{\infty}$$

for some constants A_0 , A_1 depending only on g. Hence, $||v'||_{\infty}$ is bounded for $|\beta| \leq M$ and $-\infty < \alpha \leq \alpha_0$.

Conclusion of Proof of Theorem 1. Let f be a continuous function in L^1_+ with support in the interval (a, b). We shall show that (1) is solvable for this f. First, on $(-\infty, a]$ we show that the equation

$$(10) g(u(x)) = u''(x)$$

$$u(a)=c_1, \qquad u'(-\infty)=0$$

has a solution. Let v be the function with

$$v'(t) = (2G(t))^{-1/2}, \quad -\infty < t < c_1$$

 $v(c_1) = a$

where

$$G(x) = \int_{-\infty}^{x} g(s) ds.$$

Then v is increasing and has range $(-\infty, a]$. Let u be the inverse of v on $(-\infty, a]$, u(v(t)) = t. Thus

$$u(a) = c_1$$

and

$$u'(x) = 1/v'(t) = (2G(t))^{1/2}$$

or

(11)
$$u'(x) = (2G(u(x)))^{1/2}.$$

If we differentiate both sides of (11) we see that u satisfies (10). Similarly, there is a solution of

$$u''(x) = g(u(x))$$
 $b < x < \infty$
 $u(b) = c_2, \quad u'(\infty) = 0$

which satisfies

$$u'(x) = -(2G(u(x)))^{1/2}, \quad b < x < \infty.$$

Hence, to finish the proof of the theorem we need only show that there is a solution v of the equation

(12)
$$-v'' + g(v) = f \quad \text{on} \quad (a, b)$$

with

(a)
$$v'(a) = (2G(v(a)))^{1/2}$$
,

(13)
$$(b) v'(b) = -(2G(v(b)))^{1/2}.$$

Let v_t be the solution of (12) with v(a) = t and $v'(a) = (2G(t))^{1/2}$ assured by the Proposition. (We temporarily assume that g is bounded at $+\infty$ if, in fact, it is not.) Then

$$v'_{i}(b) = v'_{i}(a) + \int_{a}^{b} v''_{i}(s)ds$$
$$= (2G(t))^{1/2} + \int_{a}^{b} g(v_{i}(s))ds - \rho$$

where $\rho = \int_a^b f(t)dt > 0$. To show that t may be chosen with $v'_i(b) = -(2G(v_i(b)))^{1/2}$ we consider

$$l(t) = (2G(t))^{1/2} + (2G(v_t(b)))^{1/2} + \int_a^b g(v_t(s))ds - \rho.$$

The Proposition implies l is continuous. We have

$$l(t) \ge -\rho + (2G(t))^{1/2}$$

Since G is unbounded, there are values of t with l(t) > 0. Next let $t \downarrow -\infty$; by the equicontinuity of the functions $\{v_t\}$ we must have $v_t \to -\infty$ uniformly on [a, b] so that $l(t) \to -\rho < 0$; hence, there is a t_0 at which $l(t_0) = 0$, and thus (12) is solvable with the boundary conditions (13).

We have now shown that (1) is solvable for all $f \in L^1_+$ under the assumption

(14)
$$g \in C^1(\mathbf{R}) \cap L^{\infty}(\mathbf{R}), \quad g \not\in L^1(\mathbf{R}).$$

If g is merely positive and continuous on **R** with $g \in L^1(-\infty, 0)$, $g \notin L^1(\mathbf{R})$, then there is a sequence $\{g_n\}$ of positive functions satisfying (14) which converge uniformly on compact subsets of **R** to g and which also increase to g on $(-\infty, \infty)$.

The comments made earlier show that the solutions $\{u_n\}$ of (1) with g_n in place of g converge to a solution of (1) for g. This completes the proof of Theorem 1.

REMARK. The condition $g \not\in L^1(\mathbf{R})$ is necessary as well as sufficient in order that Theorem 1 be valid. For suppose $g \in L^\infty(\mathbf{R}) \cap L^1(\mathbf{R})$; then the function G is bounded. If f is supported on [-1, 1] and if (1) has a solution for f, then (13) must hold with u in place of v so that

$$0 = \sqrt{2G(u(-1))} + \sqrt{2G(u(1))} + \int_{-1}^{1} g(u(s))ds - \int_{-1}^{1} f(s)ds.$$

The first three terms of this expression are bounded, independent of u, and hence the integral of f over \mathbf{R} can not exceed some fixed number depending only on g.

THEOREM 2. Let g be a positive continuous function on R with

(15)
$$\lim_{t \to -\infty} g(t) = 0, \qquad g \not\in L^{1}(\mathbf{R}).$$

Let B(x) be a positive absolutely continuous function on \mathbf{R} with $B' \in L^1(\mathbf{R})$ and B bounded away from zero. For $f \in L^1$ consider the equation

(16)
$$\begin{cases} -u''(x) + B(x)g(u(x)) = f(x), & -\infty < x < \infty \\ u'' \in L^{1}(\mathbf{R}), & \\ u'(\pm \infty) = 0. \end{cases}$$

Then (16) has a solution for each $f \in L^{\frac{1}{\epsilon}}$ if and only if g is integrable at $-\infty$.

PROOF. If (16) is solvable for some $f \in L^{\perp}$ with support in [-1, 1] then u' > 0 on $(-\infty, -1]$ and u' < 0 on $[1, \infty)$. It now follows very much as in Theorem 1 that u tends to $-\infty$ at $\pm \infty$ and that g is integrable at $-\infty$.

To show the sufficiency of the condition that g be integrable at $-\infty$ we first show that the equations

(17)
$$\begin{cases} u''(x) = B(x)g(u(x)), & |x| \ge a > 0 \\ u(-a) = c_1, & u(a) = c_2 \\ u'(\pm \infty) = 0 \end{cases}$$

have a solution. As in the proof of Theorem 1, the solution u must be monotone increasing for $-\infty < x < -a$ and monotone decreasing on (a, ∞) ; we shall only

consider the details for the case $-\infty < x < -a$, the other case being entirely similar. We wish to find a continuous function v with

(18)
$$v'(t) = \left(2\int_{-\infty}^{t} B(v(s))g(s)ds\right)^{-1/2}, \quad -\infty < t < c_1$$
$$v(c_1) = -a.$$

If such a v exists, then the inverse function u of v will satisfy

$$u'(x) = \left(2\int_{-\infty}^{x} B(r)g(u(r))u'(r)dr\right)^{1/2},$$

$$u(-a) = c_1$$

and hence u will satisfy (17). To see that (18) has a solution let b_1 and b_2 be positive numbers with $b_1 \le B(s) \le b_2$ for all s and let ξ_N be the function defined by

$$\xi_N(t) = \left(2\int_{-N}^t g(s)ds\right)^{-1/2}, \qquad -N \leq t \leq c_1.$$

Let $\Omega_N = \{ w \in C(-N, c_1) : (2b_2)^{-1/2} \xi_N(t) \le w(t) \le (2b_1)^{-1/2} \xi_N(t) \text{ for all } t \in [-N, c_1] \}$ and let T map Ω_N into Ω_N by

$$(Tw)(x) = \left(2\int_{-N}^{x} B(\tilde{w}(s))g(s)ds\right)^{-1/2}$$

where

$$\tilde{w}'(t) = w(t), \qquad \tilde{w}(c_1) = -a.$$

Clearly $Tw \in \Omega_N$; if $\{w_n\}$ is a bounded sequence in Ω_N , then $\{\tilde{w}_N\}$ is equicontinuous and uniformly bounded. Thus, T is a compact mapping and so has a fixed point w_N which must satisfy

$$w_N(x) = \left(2\int_{-N}^x B(\tilde{w}_N(s))g(s)ds\right)^{-1/2}, \qquad -N \leq x \leq c_1.$$

The functions $\{\tilde{w}_N\}$ are equicontinuous and uniformly bounded on compact subsets of $(-\infty, c_1]$ and so a subsequence, again denoted by $\{\tilde{w}_N\}$, converges uniformly on compact subsets of $(-\infty, c_1]$ to a function \tilde{w}_0 . But we also see that

$$\int_{-N}^{x} B(\tilde{w}_{N}(s))g(s)ds \to \int_{-\infty}^{x} B(\tilde{w}_{0}(s))g(s)ds$$

uniformly on compact subsets of $(-\infty, c_1]$. Hence, $w_N \to w_0$ uniformly on compacta; setting $v = \tilde{w}_0$ we see that v satisfies (18).

The remainder of the proof of Theorem 2 is like that of Theorem 1; the condition that $B' \in L^1(\mathbb{R})$ is used to prove that the sequence $\{u_n\}$ can not go to $-\infty$.

COROLLARY 3. Let $a(x) \in L^1(\mathbf{R})$, $f \in L^1(\mathbf{R})$, and let g be a positive continuous function satisfying (15). Consider the equation

(19)
$$\begin{cases} (i) & -u''(x) + a(x)u'(x) + g(u(x)) = f(x), \quad -\infty < x < \infty \\ (ii) & u'' \in L^{1}(\mathbb{R}) \\ (iii) & u'(\pm \infty) = 0. \end{cases}$$

Let g be integrable at $-\infty$ and set $w(x) = \exp[-\int_0^x a(s)ds]$. A necessary and sufficient condition that (19) be solvable is that

(20)
$$\int_{\mathbf{R}} f(x)w(x)dx > 0.$$

If (19) is solvable for all $f \in L^1$ satisfying (20), then g is integrable at $-\infty$.

PROOF. Let x = H(y) where H is the inverse of the function I defined by

$$I'(x) = 1/w(x),$$
$$I(0) = 0.$$

Then both H and I are 1-1 monotone increasing functions mapping \mathbf{R} onto \mathbf{R} and the substitution v(y) = u(H(y)) reduces (19) to

(21)
$$\begin{cases} -v''(y) + (H'(y))^2 g(v(y)) = (H'(y))^2 f(H(y)), \\ v'' \in L^1, \quad v'(\pm \infty) = 0 \end{cases}$$

which has a solution according to Theorem 2 precisely when

$$0 < \int_{-\infty}^{\infty} (H'(y))^2 f(H(y)) dy$$
$$= \int_{-\infty}^{\infty} f(x) w(x) dx.$$

REMARK. Let β be a maximal monotone graph lying in the upper half-plane; that is, $\beta(x)$ is a subset of $\{y > 0\}$ for each $x \in \mathbb{R}$. Let $\beta^{\circ}(x) = \min\{y : y \in \beta(x)\}$. The result of Crandall and Evans is that if

$$\int_{-\infty}^{a} \beta^{0}(x) dx < \infty$$

for some $a \in D(\beta)$, then the equation

(22)
$$-u''(x) + \beta(u(x)) \ni f(x), \qquad u'(\pm \infty) = 0, \qquad f \in L^{1}_{+}$$

is solvable. This result also follows from Theorem 1 in the following way. Let $\{\beta_n\}$ be a sequence of positive continuous monotone increasing functions which increase to β^0 on $D(\beta)$ and which increase to $+\infty$ off $D(\beta)$. The solutions $\{u_n\}$ of (1) with β_n in place of g then decrease on \mathbb{R} to a solution u of (22).

A final result related to Theorem 1 is presented below.

THEOREM 4. Let g be a positive continuous function on **R** satisfying (15). For $f \in L^1(\mathbf{R})$ consider the equation

(23)
$$\begin{cases} u''(x) + g(u(x)) = f(x), & -\infty < x < \infty \\ u'' \in L^{1}(\mathbf{R}) \\ u'(-\infty) = \xi_{1}, & u'(+\infty) = \xi_{2} \end{cases}$$

where

(24)
$$\int_{-\infty}^{\infty} f(x)dx = \rho > \xi_2 - \xi_1.$$

- (a) Suppose g is integrable at $-\infty$. If (23) has a solution for some f with compact support (which necessarily satisfies (24)) then $\xi_1 > 0 > \xi_2$. If (23) has a solution for $f \equiv 0$, then $\xi_1 = -\xi_2$.
- (b) If g is integrable at $-\infty$ and if $\xi_1 > 0 > \xi_2$, then (23) has a solution for all f with

(25)
$$\xi_2 - \xi_1 < \rho = \int_{-\infty}^{\infty} f(x) dx \le \min \{ \xi_2, -\xi_1 \}.$$

(c) If (23) has a solution for some f satisfying (24), then g is integrable at $-\infty$.

PROOF. (a). If f has support in [a, b], then u''(x) < 0 for x < a and x > b. If $u'(-\infty) \le 0$, then u' < 0 on $(-\infty, a)$ and hence u is decreasing on $(-\infty, a)$. However, u must tend to $-\infty$ at both $-\infty$ and $+\infty$ if u is a solution of (23) and thus u can not decrease on $(-\infty, a)$. Likewise, $u'(+\infty)$ must be negative. Further, if $u'' + g(u) \equiv 0$, then

$$(u'(x))^2 + 2G(u(x)) \equiv const.$$
 on $(-\infty, \infty)$

which clearly implies that $\xi_1 = -\xi_2$.

- (c) is proved exactly as in Theorem 1.
- (b) is the most difficult of the assertions. First, exactly as in Theorem 1, it can

be shown that the set of those f satisfying (24) for which (23) is solvable is closed in $L^1(\mathbf{R})$. Next, we show that if f has compact support, say in (a, b), and if f satisfies

(25)'
$$\xi_2 - \xi_1 < \rho = \int_{-\infty}^{\infty} f(x) dx < \min(-\xi_1, \xi_2)$$

then (23) has a solution. The key to this, as in Theorem 1, is to show two things: first that the equations

(26)
$$u''(x) + g(u(x)) = 0, \qquad x \notin [a, b]$$
$$u'(-\infty) = \xi_1, \qquad u'(\infty) = \xi_2$$

have a solution which necessarily satisfies

(27)
$$u'(a) = (\xi_1^2 - 2G(u(a)))^{1/2},$$
$$u'(b) = -(\xi_2^2 - 2G(u(b)))^{1/2}$$

and second that the equation

(28)
$$u''(x) + g(u(x)) = f(x), a \le x \le b$$

is solvable subject to the non-linear boundary conditions (27). Both these assertions are proved as the similar statements are in the proof of Theorem 1.

REMARK. The upper bound in (25) is not completely satisfactory; however, the situation for (23) is more involved than that of (1) as (a) shows.

ACKNOWLEDGEMENTS

The author would like to thank Prof. M. Crandall for a number of helpful comments on a preliminary version of this manuscript.

REFERENCES

- 1. E. A. Coddington and N. Levinson, *Theory of Ordinary Differential Equations*, McGraw-Hill, New York, 1955.
- 2. M. G. Crandall and L. C. Evans, A singular semilinear equation in L^1 (**R**), MRC Technical Summary Report #1566, Sept. 1975; to appear in Trans. Amer. Math. Soc.

MATHEMATICS RESEARCH CENTER
UNIVERSITY OF WISCONSIN-MADISON

AND

NORTHWESTERN UNIVERSITY EVANSTON, ILL.